Геометрия
Геоме́трия (от др.-греч. γεωμετρία «землемерие»; γῆ — земля и μετρέω — «измеряю») — раздел математики, изучающий пространственные отношения, формы и их обобщения.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Цитаты
[править]Негеометр да не войдёт (Распространённый вариант: «Пусть не входит никто, не знающий геометрии»). — Надпись над входом в Платоновскую Академию. Позже Николай Коперник поставил это изречение эпиграфом к своему трактату «О вращении небесных сфер» (1543 г.). | |
ἀγεωμέτρητος μηδεὶς εἰσίτω (Ageometretos medeis eisito) |
— ...Те, кто занимается геометрией, счетом и тому подобным, предполагают в любом своем исследовании, будто им известно, что такое чет и нечет, фигуры, три вида углов и прочее в том же роде. Это они принимают за исходные положения и не считают нужным отдавать в них отчет ни себе, ни другим, словно это всякому и без того ясно. Исходя из этих положений, они разбирают уже все остальное и последовательно доводят до конца то, что было предметом их рассмотрения.
— Это-то я очень хорошо знаю. | |
— Платон |
— Это наука, которой занимаются ради познания вечного бытия, а не того, что возникает и гибнет. | |
— Платон |
Нет царского пути в геометрии. — Ответ египетскому царю Птолемею I, который просил указать ему более легкий путь изучения геометрии. Высказывание приведено в «Математической коллекции» Паппа Александрийского (рубеж III—IV вв.) и «Комментарии к Эвклиду» Прокла Диадоха (середина V в.). | |
— Евклид |
Геометрия же приносит большую пользу архитектуре, и прежде всего она учит употреблению циркуля и линейки, что чрезвычайно облегчает составление планов зданий и правильное применение наугольников, уровней и отвесов.[2] — Об архитектуре. Книга I, глава I. | |
— Витрувий |
Геометрия есть знание величин, фигур и их границ, а также отношений между ними и производимых над ними операций, разнообразных положений и движений; она начинает с неделимой точки, завершает объемными фигурами и исследованием многообразных различий между ними, и уже после этого от более сложного возвращается к более простому и к началам более сложного. А именно, она пользуется синтезом и анализом, всякий раз начиная с предпосылок, начала беря от более высокого знания и используя все диалектические методы: когда речь идет о началах, она использует отделение видов от родов и определения; когда о том, что следует за началами, — доказательством и анализом, чтобы показать переход от более простого к более сложному и опять возвращение к более простому, отдельно производя рациональные построения относительно того, что ей подлежит, отдельно — относительно аксиом, от которых она переходит к доказательствам, и относительно постулатов; и отдельно — относительно существенных свойств, показывая, что и они связаны с предметом ее рассмотрения. — Комментарий к первой книге «Начал» Евклида. Введение. Ч. II. Гл. 5. | |
— Прокл |
...Без [науки измерения[3]] невозможно сделаться настоящим мастером... Но так как она является истинной основой всякой живописи, я решил изложить её начала и основания для всех жаждущих знаний юношей, дабы они, овладев искусством измерения с помощью циркуля и линейки, могли бы благодаря этому познать и увидеть своими глазами истину и чтобы они не только жаждали знаний, но также могли достигнуть настоящего и более полного понимания.[4] — «Руководство к измерению с помощью циркуля и линейки в линиях, плоскостях и целых телах, составленное Альбрехтом Дюрером и напечатанное на пользу всем любящим знания с надлежащими рисунками в 1525 году.» | |
— Альбрехт Дюрер |
Геометрия едина и вечна, она блистает в Божьем духе. Наша причастность к ней служит одним из оснований, по которым человек должен быть образом Божьим. Но в геометрии имеются пять евклидовых тел, совершеннейший род фигур после сферы. По их образцу и прообразу устроена наша планетная система. — «Разговор с Звездным вестником» (1610) | |
— Иоганн Кеплер |
Надо признаться, что попытка трактовать естественные проблемы без геометрии есть попытка сделать невозможное.[5] — «Диалог о двух главнейших системах мира — Птолемеевой и Коперниковой» (1632) | |
— Галилео Галилей |
Что мы с вами скажем на это?.. Не должны ли мы признать, что геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать? Не прав ли был Платон, требуя от своих учеников прежде всего основательного знакомства с математикой?[6] — «Беседы и математические доказательства, касающиеся двух новых наук» (1638) | |
— Галилео Галилей |
Те длинные цепи выводов, сплошь простых и легких, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне повод представить себе, что и все вещи, которые могут стать предметом знания людей, находятся между собой в такой же последовательности.[7] — «Рассуждение о методе, чтобы хорошо направлять свой разум и отыскивать истину в науках» (1637) | |
— Рене Декарт |
Ce qui passe la géométrie nous surpasse | |
— Блез Паскаль |
Геометрия за то и прославляется, что заимствовав извне столь мало основных положений, она столь многого достигает.[10] — Из предисловия к первому изданию «Математических начал натуральной философии» (1687). Почти 100 лет спустя Иммануил Кант процитировал эту фразу в предисловии к «Метафизическим началам естествознания» (1786). | |
Ac gloriatur Geometria quod tam paucis principiis aliunde petitis tam multa præstet. | |
— Исаак Ньютон |
Геометрия есть наука, определяющая свойства пространства синтетически и тем не менее a priori[11]. Каким же должно быть представление о пространстве, чтобы такое знание о нем было возможно? Оно должно быть первоначально созерцанием, так как из одного только понятия нельзя вывести положения, выходящие за его пределы, между тем мы встречаем это в геометрии <...>. Но это созерцание должно находиться в нас a priori, т. е. до всякого восприятия предмета, следовательно, оно должно быть чистым, не эмпирическим созерцанием. В самом деле, все геометрические положения имеют аподиктический характер, т. е. связаны с сознанием их необходимости, например положение, что пространство имеет только три измерения; но такие положения не могут быть эмпирическими, или суждениями, исходящими из опыта, а также не могут быть выведены из подобных суждений <...>. | |
— Иммануил Кант |
Вдохновение нужно в геометрии, как и в поэзии. — «Отрывки из писем, мысли и замечания» (1828) | |
— Александр Пушкин |
Понятие «истинный» неприложимо к высказываниям чистой геометрии, потому что словом «истинный» мы в конечном счете постоянно характеризуем согласование с «реальным» предметом; но геометрия не занимается отношением своих понятий к предметам опыта, она имеет дело только с логической связью этих понятий между собой.[13] — «О специальной и общей теории относительности» (1917) | |
— Альберт Эйнштейн |
Здравый рассудок убежден, что реальное пространство, пространство, в котором мы живем и передвигаемся, соответствует аксиомам Евклида, что по отношению к этому пространству а является истинным, тогда как не-а ложным. Дискуссия на эти темы уводит далеко за пределы математики, так как вопрос о свойствах физического мира есть вопрос физический, а не математический. Это различие, констатированное в результате открытия неевклидовой геометрии, имеет фундаментальное значение. Проблема пространства разделяется на две части: наряду с проблемой математического пространства было признано существование проблемы физического пространства.
<...> | |
— Ганс Рейхенбах |
Влияние геометрии на философию и научный метод было глубоким. Геометрия в таком виде, в каком она установилась у греков, отправляется от аксиом, которые являются самоочевидными (или полагаются таковыми), и через дедуктивные рассуждения приходит к теоремам, которые весьма далеки от самоочевидности. При этом утверждают, что аксиомы и теоремы являются истинными применительно к действительному пространству, которое является чем-то данным в опыте. Поэтому кажется возможным, используя дедукцию, совершать открытия, относящиеся к действительному миру, исходя из того, что является самоочевидным. Подобная точка зрения оказала влияние как на Платона и Канта, так и на многих других философов, стоявших между ними. Когда Декларация независимости говорит: «Мы утверждаем, что эти истины самоочевидны», — она следует образцу Евклида. Распространенная в XVIII веке, доктрина о естественных правах человека является поиском евклидовых аксиом в области политики. | |
— Бертран Рассел |
[Историческую гипотезу] можно сформулировать в таком виде: (1) Открытие иррациональности квадратного корня из двух, которое привело к краху пифагорейской программы сведения геометрии и космологии (и, по-видимому, всего знания) к арифметике, вызвало кризис греческой математики. (2) «Начала» Евклида представляют собой не учебник геометрии, а скорее последнюю попытку платоновской школы преодолеть этот кризис путем перестройки всей математики и космологии на фундаменте геометрии (что означало инверсию пифагорейской программы арифметизации) для того, чтобы иметь дело с проблемой несоизмеримости на систематической основе, а не ad hoc. (3) Именно Платоном была впервые задумана программа, впоследствии реализованная Евклидом: Платон первым осознал необходимость перестройки и, выбрав геометрию в качестве нового фундамента и метод геометрических пропорций в качестве нового метода, выдвинул программу геометризации математики, включая арифметику, астрономию и космологию; именно его идеи легли в основу геометрической картины мира, а, следовательно, и современной науки — науки Коперника, Галилея, Кеплера и Ньютона.[15] — «Платон и геометрия» (1957) | |
— Карл Поппер |
Итак, мыслимы различные геометрии, и им соответствуют различные числовые системы. Но тогда естественно спросить, которая же из геометрий, и, в частности, которое же из представлений о геометрической прямой, описывает реальное физическое пространство и, в частности, реальную физическую прямую. Здесь надо отчётливо понимать, что геометрическое описание физической реальности возможно только с известной степенью приблизительности. Так, планету Земля можно описать как шар, как эллипсоид и как геоид: и первое, и второе, и даже третье описания приблизительны, хотя точность их возрастает (но не надо думать, что чем точность выше, тем описание лучше: подлинную революцию произвело именно представление о Земле как о шаре и, скорее всего, это представление навсегда останется «самым главным»). При не слишком больших и не слишком малых (по сравнению с размером человека) пространственных размерах физическое пространство с достаточной точностью описывается обычной геометрией Евклида. При значительном увеличении или, напротив, уменьшении размеров эта точность начинает расшатываться. О том, как устроено физическое пространство в очень большом и в очень малом, мы знаем ещё недостаточно.[16] | |
— Владимир Успенский, «Нестандартный анализ», 2002 |
...Вернемся к началу прошлого столетия. Великий французский архитектор Корбюзье как-то воскликнул: «Всё вокруг геометрия!». Сегодня уже в начале 21-го столетия мы можем повторить это восклицание с еще большим изумлением. В самом деле, посмотрите вокруг — всюду геометрия! Современные здания и космические станции, авиалайнеры и подводные лодки, интерьеры квартир и бытовая техника, микросхемы и даже рекламные ролики. Воистину, современная цивилизация — это Цивилизация Геометрии. Геометрические знания и умения, геометрическая культура и развитие являются сегодня профессионально значимыми для многих современных специальностей, для дизайнеров и конструкторов, для рабочих и ученых... | |
— Игорь Шарыгин |
Понимание того, в чём состоят задачи на построение, и в частности древняя задача о квадратуре круга, входит, на наш взгляд, в общекультурный минимум. Чтобы дать возможность читателю согласиться или не согласиться с этим тезисом, напомним необходимые сведения. Геометрия требует чертежа, и античные математики делали такие чертежи. Самым удобным и дешёвым способом было чертить на песке. Архимед, величайший учёный древности (да и не только древности!), был убит римским солдатом в 212 году до н. э., во время Второй пунической войны, на Сицилии, в своих родных Сиракузах. По преданию, солдат застал его на песчаном пляже и, взбешённый его словами «Не трогай мои чертежи!», зарубил мечом.[18] | |
— Владимир Успенский, «Апология математики, или О математике как части духовной культуры», 2007 |
В поэзии
[править]— Леонид Лавров, «Радость», 1928 |
— Николай Олейников, «Геометрия — причина» (из сборника «Пучина страстей»), 1937 |
Примечания
[править]- ↑ Платон. Сочинения в четырех томах. Т. 3. Ч. 1. СПб., 2007. С. 346-347.
- ↑ Витрувий Марк Поллион. Десять книг об архитектуре. М,, 1936. С. 17.
- ↑ В тексте Kunst der Messung — наука измерения, под которой Дюрер понимает геометрию.
- ↑ Дюрер А. Дневники. Письма. Трактаты. Т. 2. М., 1957. С. 43.
- ↑ Галилео Галилей. Избранные произведения в двух томах. М.: Наука, 1964. Т. 1. С. 302.
- ↑ Галилео Галилей. Избранные произведения в двух томах. М.: Наука, 1964. Т. 2. С. 221.
- ↑ Декарт Р. Рассуждение о методе с приложениями. Диоптрика. Метеоры. Геометрия. М.: АН СССР, 1953. С. 23.
- ↑ Словом «геометрия» Паскаль называет всю вообще математику, а «геометрическим умом» — все мыслительные операции, характерные для математики.
- ↑ Вопросы философии. 1994. №6.
- ↑ Ньютон И. Математические начала натуральной философии. М.: Наука, 1989. С. 2.
- ↑ a priori (лат. «от предшествующего») — знание, полученное до опыта и независимо от него.
- ↑ Кант И. Критика чистого разума. М.: Мысль, 1994. С. 52.
- ↑ А. Эйнштейн. О специальной и общей теории относительности (общедоступное изложение). М.: Государственное издательство, 1922. С. 8.
- ↑ Рейхенбах Г. Философия пространства и времени. М.: Прогресс, 1985. С. 23, 121.
- ↑ Поппер К. Р. Открытое общество и его враги. Т. 1. М.: Феникс, 1992. С. 395.
- ↑ Успенский В.А. «Труды по нематематике». — М., ОГИ, 2002 г.
- ↑ Математическое просвещение. 2004. №8. С. 37, 52.
- ↑ Успенский В.А. «Апология математики, или О математике как части духовной культуры». — М.: журнал «Новый Мир», № 11-12, 2007 г.
- ↑ Л. Лавров. «Из трёх книг». М.: Советский писатель, 1966 г.
- ↑ Н. М. Олейников, Стихотворения и поэмы. Новая библиотека поэта. — СПб.: Академический проект, 2000 г.
Ссылки
[править]
Поделитесь цитатами в социальных сетях: |