Химический элемент
Хими́ческий элеме́нт — совокупность атомов с одинаковым зарядом атомных ядер. Атомное ядро состоит из протонов, число которых равно атомному номеру элемента, и нейтронов, число которых может быть различным. Каждый химический элемент имеет своё латинское название и химический символ, состоящий из одной или пары латинских букв и приводятся в таблице Периодической системы элементов Менделеева. Формой существования химических элементов в свободном виде являются простые вещества. Химические элементы образуют около 500 простых веществ. Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией. Например, углерод в виде простого вещества известен в форме угля, графита и алмаза (и это далеко не все формы существования углерода).
По состоянию на 2016 год известно 118 химических элементов. 94 из них встречаются в природе (некоторые лишь в микроколичествах), а остальные 24 искусственно синтезированы. Химические вещества могут состоять как из одного химического элемента (простое вещество), так и из разных (химическое соединение).
В определениях и коротких цитатах
[править]— Климент Тимирязев, «Жизнь растения», 1878 |
— Виктор Анри, «Современное научное мировоззрение», 1919 |
В своей лаборатории я поставил себе на решение вопрос ― являются ли химические элементы организмов <...> такими же, какие мы видим в окружающей природе, или нет.[3] | |
— Владимир Вернадский, Письма, 1929 |
— Илья Ильф, Евгений Петров, «Золотой телёнок», 1931 |
— Константин Циолковский, «Монизм Вселенной», 1931 |
Реакцию ядерного слияния можно назвать алхимической, потому что в средние века алхимики пытались превратить одни химические элементы в другие. Больше всего им, правда, хотелось научиться делать золото. Сейчас, однако, ясно, что ядерная алхимия способна давать нечто поважнее золота — например, энергию.[6] | |
— Матвей Бронштейн, «Солнечное вещество», 1936 |
Мы философствуем, боремся за передовые идеи, лепечем о пользе общественного труда, строим теории, а в конечном итоге разлагаемся на химические элементы, как растения и животные, которые не строят никаких теорий.[7] | |
— Василий Аксёнов, «Коллеги», 1962 |
— Борис Ляпунов, «Неоткрытая планета», 1963 |
...чтобы расположить химические элементы на самом первом листочке в соответствии с периодическим законом и построить свою первую периодическую таблицу, Менделеев оставил в ней пустые места и принял новые значения атомных весов для многих элементов. По существу уже это было предсказанием.[9] | |
— Игорь Васильевич Петрянов-Соколов, «Закону Менделеева 100 лет», 1969 |
В 1661 году Роберт Бойль написал книгу под названием «Химик-скептик», где он объяснил суть элемента. Если всё мироздание действительно состоит из элементов, то каждый элемент должен являться простейшей, неделимой субстанцией, и тогда элемент нельзя создать из ещё более мелких субстанций.[10] | |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
Для более легкого обозначения химических элементов шведский химик Йёнс Якоб Берцелиус (1779–1848) ввел в 1814 году для каждого элемента свой химический символ.[10] | |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
— Владимир Вернадский, «Автотрофность человечества», 1970 |
— Александр Китайгородский, Лев Ландау, «Физика для всех. Молекулы», 1978 |
Для того чтобы осознать, что же такое «химический элемент», ученым потребовалось около 2200 лет...[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Странные элементы творят в нашем организме странные дела – зачастую во вред нам, но иногда и на пользу. Элемент, токсичный в одних обстоятельствах, в других может оказаться противоядием, которое спасет жизнь.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
В научной и научно-популярной литературе
[править]Далеко не все химические элементы встречаются в растении, и даже из тех, которые встречаются, мы упомянем только о главнейших, играющих выдающуюся роль в жизни растения. Для того, чтобы получить понятие о химическом составе растения, мы подвергаем его действию высокой температуры. Прежде всего улетит вода, и при температуре немного выше 100° мы получим так называемое сухое вещество растения. <...> | |
— Климент Тимирязев, «Жизнь растения», 1878 |
— Константин Циолковский, «Монизм Вселенной», 1931 |
В звездах происходит, по выражению физиков, ядерное горение водорода, а гелий — это зола, остающаяся после сгорания. Однако гелиевая зола сильно отличается от обычной. Обычную выгребают из печки и выбрасывают, а гелиевая идет в дело: в звездной печи ядра гелия тоже могут сливаться, образуя постепенно другие, все более и более тяжелые элементы. Реакцию ядерного слияния можно назвать алхимической, потому что в средние века алхимики пытались превратить одни химические элементы в другие. Больше всего им, правда, хотелось научиться делать золото. Сейчас, однако, ясно, что ядерная алхимия способна давать нечто поважнее золота — например, энергию.[6] | |
— Матвей Бронштейн, «Солнечное вещество», 1936 |
Дело в том, что выявилась возможность более глубокого отличия между составом, а следовательно, и пищей живых организмов и окружающей их среды, чем я тогда предполагал. Живые организмы, возможно, не только создают особые, нигде в других условиях не образующиеся на земле молекулы ― соединения элементов ― чрезвычайно сложного и своеобразного строения и не только избирают из окружающей среды определенные ― качественно и количественно ― химические элементы, но могут обладать способностью разлагать изотопические смеси, из которых состоят химические элементы, меняют атомный вес (меняют отношение между изотопами, составляющими химический элемент) и избирают из окружающей среды отдельные изотопы. Эта научная гипотеза, вытекавшая из данных наблюдения над живым веществом и над биосферой, была поставлена мной в 1926 г. конкретно, и с 1928 г. в этой области идет научная экспериментальная работа. <...> И можно поставить вопрос, не явится ли искусственное изготовление пищи человека утопией, раз должно приниматься во внимание происходящее при этом изменение некоторых химических элементов. Возможно, что некоторые химические элементы входит в пищу человека через растительные или животные вещества, которыми он питается, или в виде чистых изотопов, или в виде измененной по сравнению с обычным химическим элементом иной изотопической смеси. Если только процесс изменения изотопических смесей совершается в природе исключительно в живом веществе, то в таком случае человек не может избавиться от растительной и животной пищи, если, конечно, человек не сумеет сам извлекать из косной материи нужные ему для жизни химические элементы ― иные, чем в окружающей среде, их изотопические смеси, ― или получать чистые изотопы.[11] | |
— Владимир Вернадский, «Автотрофность человечества», 1970 |
В 1661 году Роберт Бойль написал книгу под названием «Химик-скептик», где он объяснил суть элемента. Если всё мироздание действительно состоит из элементов, то каждый элемент должен являться простейшей, неделимой субстанцией, и тогда элемент нельзя создать из ещё более мелких субстанций. Если же субстанцию можно разбить на ещё более мелкие субстанции, то это уже не элемент. | |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
Важный шаг вперёд в этом направлении сделал французский химик Жозеф Луи Пруст (1754–1826). Он работал, к примеру, с неким соединением (теперь мы называем его дигидроксокарбонатом меди, состоящим из трёх элементов: меди, углерода и кислорода). Сначала Пруст взял образец чистого дигидроксокарбоната меди, разложил его на эти три элемента и взвесил каждый из них. Он обнаружил, что все три элемента в составе вещества всегда находятся в одной и той же пропорции: 5 частей меди (по весу), 4 части кислорода и 1 часть углерода. То есть во всех образцах элементы складывались только в этой пропорции, и никак иначе. | |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
Взять, к примеру, известь. В XVIII веке известь считалась элементом, так как ни одна химическая реакция не могла разложить её на составляющие. Однако у химиков возникло предположение, что известь состоит из какого-то металла и кислорода. И лишь в 1808 году английскому химику Гемфри Дэви (1778–1829) удалось разложить известь и выявить новый элемент — кальций (так по-латыни называется известь). Учёный применил для этого электрический ток — новую для того времени технологию. | |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
В середине XIX века существовали два определения элемента. Первое — элемент не может быть разбит на два или несколько более простых субстанций (определение Бойля) и второе — элемент состоит из атомов с определённым атомным весом (определение Дальтона). Впрочем, все элементы удовлетворяли и первому и второму определению. Тем не менее определённые сомнения все-таки были, слишком уж много было химических элементов (в 1860 году было известно уже более 60 элементов). | |
— Айзек Азимов, «Популярная физика. От архимедова рычага до квантовой механики», 1969 |
Для того чтобы осознать, что же такое «химический элемент», ученым потребовалось около 2200 лет – поиск начался примерно в 400 году до н. э. в Древней Греции и завершился к 1800 году в Европе. Дело в том, что большинство элементов очень редко встречаются в чистом виде. Сложно было понять, что делает углерод углеродом, так как этот элемент встречается в виде тысяч соединений, каждое из которых обладает особенными свойствами. Сегодня мы знаем, что, например, углекислый газ – не элемент, так как каждая молекула этого газа состоит из атомов углерода и кислорода. Но углерод и кислород являются элементами, так как их нельзя разложить на более простые составляющие, не разрушив атомы.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся. Велись долгие метафизические споры о том, кто (или Кто) мог создать мироздание и почему Он это сделал, но все соглашались, что все элементы – ровесники нашей Вселенной. Они не появляются и не исчезают, а просто существуют. Более новые теории, в частности теория Большого взрыва, сформулированная в 1930-е годы, также принимали эту точку зрения за аксиому.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Один учёный подсчитал, что уже через десять минут после Большого взрыва сформировалась вся известная материя, а потом резюмировал: «элементы были изготовлены быстрее, чем хорошая хозяйка зажарит утку с картошкой». Опять же, здесь мы имеем дело с общепринятым мнением о том, что история всех элементов протекает исключительно стабильно и является, в сущности, «астроисторией».[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
При взрыве сверхновой в нашу Солнечную систему были вброшены все существующие в природе элементы, а благодаря перемешиванию пород на молодых незатвердевших планетах эти элементы равномерно распределились в скальных грунтах. Но эти процессы не позволяют ответить на все вопросы, связанные с распределением элементов на Земле. С тех пор как взорвалась сверхновая, многие элементы уже исчезли с лица Земли, так как их ядра оказались слишком непрочными, чтобы уцелеть в природе. Такая нестабильность поражала учёных, в периодической системе оказалось несколько необъяснимых пробелов, которые химики менделеевской эпохи не могли заполнить, несмотря на все поиски. В конце концов, эти клетки таблицы все же удалось заполнить, но сначала пришлось развить целые новые научные дисциплины. Освоив эти науки, мы научились создавать элементы самостоятельно и лишь потом осознали, что из-за непрочности некоторые элементы таят в себе страшную угрозу. Процессы синтеза и расщепления атомов оказались связаны гораздо теснее, чем кто-либо мог предположить.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Периодическая таблица полна переменчивых элементов, большинство из которых гораздо сложнее, чем прямолинейные агрессоры из «коридора ядов». Странные элементы творят в нашем организме странные дела – зачастую во вред нам, но иногда и на пользу. Элемент, токсичный в одних обстоятельствах, в других может оказаться противоядием, которое спасет жизнь. Элементы, участвующие в нашем метаболизме каким-то необычным образом, могут стать для врачей новыми диагностическими инструментами. Взаимосвязи между элементами и лекарствами даже помогают прояснить, как сама жизнь вызревает из неодушевленного химического материала, наполняющего периодическую систему.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
В определённом смысле периодическая система практически бесполезна при изучении звездной истории элементов. Все звёзды состоят почти исключительно из водорода и гелия, это же можно сказать и о планетах-гигантах. Как ни важен водородно-гелиевый цикл для космологии, сам по себе он малоинтересен. Но чтобы осознать самые интересные детали нашего существования – роль сверхновых или углеродную основу жизни, – нужно изучать периодическую систему. Как писал философ и историк Эрик Скерри, «все элементы кроме гелия и водорода составляют лишь 0,04 процента Вселенной. Казалось бы, вся остальная периодическая система не имеет особого значения. Но, как бы то ни было, мы живём на Земле, а на этой планете набор элементов гораздо сложнее».[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Видно, что проблемы с общепринятыми Периодическими Таблицами химических элементов довольно глубокие. Они связаны с тем, что до сих пор у Периодического Закона химических элементов нет логического обоснования. Для фундаментальных Законов Природы, каковым, безусловно, является Периодический Закон химических элементов, логическим обоснованием может и должно быть математическое обоснование на математических принципах. | |
— Сен Гук Ким, «Элементы», 2016 |
Индуктивный (от частного к общему) подход к систематизации химических элементов по мере открытия всё новых элементов оправдан с исторической точки зрения. Но к сегодняшнему дню открытия и синтез новых химических элементов подошли к верхнему пределу множества химических элементов. Настало время для дедуктивной (от общего к частному) систематизации множества химических элементов. Это не означает пренебрежения индуктивным методом, в особенности результатами, полученными к сегодняшнему дню. Напротив, результаты дедуктивного выявления общих математических закономерностей в распределении химических элементов (номеров) должны сопоставляться с известным ныне порядком (нумерацией) распределения химических элементов, полученным индуктивно в течение более двухсот лет.[14] | |
— Сен Гук Ким, «Элементы», 2016 |
В публицистике и документальной прозе
[править]Всякое излучение, видимое или невидимое, представляет из себя некоторую потерю энергии; следовательно принцип относительности Эйнштейна нам говорит что масса какого нибудь тела, излучающего тепловые, видимые или ультра-фиолетовые лучи ― уменьшается; если мы следовательно предположив, что когда-то, давно, различные элементы, азот, кислород, медь, свинец, золото и т. д. образовались из соединения элементарных атомов водорода и гелия, то с тех пор происходило постоянное излучение энергии и масса этих элементов должна была уменьшиться; вот почему атомные веса различных элементов не равны точно целым числам, а имеют значения, близко лежащие к целым числам. Мы можем из атомного веса узнать историю происхождения элементов. Эта гипотеза происхождения элементов, построенная знаменитым французским физиком Ланжевеном, получила в этом году замечательное подтверждение в опытах английского физика Рутерфорда, которому удалось показать, что под влиянием х-лучей азот распадается на водород и гелий.[2] | |
— Виктор Анри, «Современное научное мировоззрение», 1919 |
Закон Менделеева в этом не имеет равных себе. Даже при самой первой формулировке закона ― при составлении первого варианта периодической таблицы ― Менделеев должен был основывать размещение элементов в таблице на предсказаниях, вытекающих из самого периодического закона. Это ― яркий пример диалектической логики познания. Для того чтобы расположить химические элементы на самом первом листочке в соответствии с периодическим законом и построить свою первую периодическую таблицу, Менделеев оставил в ней пустые места и принял новые значения атомных весов для многих элементов. По существу уже это было предсказанием. Эти пустые места и исправленные значения атомных весов, определяющие положение химических элементов в системе, были абсолютно недопустимы с точки зрения химика прошлого столетия ― и абсолютно необходимы для установления периодического закона.[9] | |
— Игорь Васильевич Петрянов-Соколов, «Закону Менделеева 100 лет», 1969 |
Даже в списке великого француза Лавуазье (1743-1794), которого считают основателем химии, наряду с действительными элементами фигурируют и невесомые элементы: теплотвор и световое вещество. В первой половине XVIII века было известно 15 элементов, а к концу века число их возросло до 35. Правда, лишь 23 из них ― действительные элементы, остальные же ― или несуществующие элементы, или вещества, как едкие натр и калий, которые оказались сложными. К середине XIX века в химических руководствах описывалось уже свыше 50 неразложимых веществ.[12] | |
— Александр Китайгородский, Лев Ландау, «Физика для всех. Молекулы», 1978 |
...при упрощённом взгляде на историю легко переоценить вклад в науку, сделанный Менделеевым, Мейером и другими. Они, несомненно, проделали важную работу, соорудив каркас, на котором потомки смогли разместить все химические элементы. Но необходимо отметить, что в 1869 году было известно всего две трети элементов, и долгие годы многие из них находились не на своих местах даже в самых лучших таблицах.[13] | |
— Сэм Кин, «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева», 2010 |
Мир камней демократичнее, чем мир людей. Смешную иерархию элементов придумали люди. Золото они назвали «благородным» за то, что оно не подвержено коррозии, а ксенон с криптоном полупрезрительно окрестили «инертными газами» ровно за то же самое свойство ― нежелание вступать в случайные контакты с другими.[15] | |
— Василий Авченко, «Кристалл в прозрачной оправе». Рассказы о воде и камнях, 2015 |
В мемуарах, письмах и дневниковой прозе
[править]Для того, чтобы сделать Вам ясным, как обставлена здесь моя научная работа ― я хочу коснуться недавнего со мной происшествия, тем более, что по этому делу я обращаюсь за помощью к Вам. В своей лаборатории я поставил себе на решение вопрос ― являются ли химические элементы организмов (напр<имер>, железо или калий) такими же, какие мы видим в окружающей природе, или нет. Задача эта раньше никогда еще не ставилась. С величайшими усилиями я мог довести это дело до конца...[3] | |
— Владимир Вернадский, Письма, 1929 |
В художественной прозе
[править]...в маленьком номере, отведенном дирижёру симфонического оркестра, спал Остап Бендер. Он лежал на плюшевом одеяле, одетый, прижимая к груди чемодан с миллионом. За ночь великий комбинатор вдохнул в себя весь кислород, содержащийся в комнате, и оставшиеся в ней химические элементы можно было назвать азотом только из вежливости. Пахло скисшим вином, адскими котлетами и еще чем-то непередаваемо гадким. Остап застонал и повернулся. Чемодан свалился на пол.[4] | |
— Илья Ильф, Евгений Петров, «Золотой телёнок», 1931 |
― А кто вообще его избежит? ― выкрикнул Максимов. ― Человек подходит к концу и думает: ну, вот и все. И зачем все это было? Что это я делал здесь? Мы философствуем, боремся за передовые идеи, лепечем о пользе общественного труда, строим теории, а в конечном итоге разлагаемся на химические элементы, как растения и животные, которые не строят никаких теорий. Трагикомедия, да и только. В народе говорят: все там будем. Все! И передовики производства, и бездельники, и благородные люди, и подлецы. А где это «там»? Нет этого «там». Тьма.[7] | |
— Василий Аксёнов, «Коллеги», 1962 |
Больше половины всего циркония добывают зарубежные страны у берегов Австралии. На берегах различных морей и крупных озер скопились огромные залежи черных песков. Шторм и прибой возвращают речные наносы, в которых очень много железа. Песчаные открытые «рудники» ― дешевое и притом почти неистощимое сырье. Реки и моря все время пополняют его запас. В прибрежных месторождениях нашли почти все химические элементы. В прибрежной отмели иной раз находили алмазы. Похоже, что и это ― дары подводных недр, кимберлитовые трубки выходят и на дно.[8] | |
— Борис Ляпунов, «Неоткрытая планета», 1963 |
В поэзии
[править]он зажег злоязычную спичку, | |
— Виктор Соснора, «Возмездье», 1964 |
Источники
[править]- ↑ 1 2 К.А.Тимирязев. «Жизнь растения» (по изданию 1919 года). — М.: Сельхозгиз, 1936 г.
- ↑ 1 2 В. А. Анри. Современное научное мировоззрение. — М.: «Грядущая Россия», 1920 г.
- ↑ 1 2 Вернадский В.И. Труды по всеобщей истории науки. Второе издание. ― Москва: «Наука», 1988 г.
- ↑ 1 2 Ильф И., Петров Е., Собрание сочинений: В пяти томах. Т.2. — М: ГИХЛ, 1961 г.
- ↑ 1 2 Циолковский К. Э. Ум и страсти. Воля вселенной. Неизвестные разумные силы. ― М.: МИП «Память», Российско-Американский Университет, 1993 г.
- ↑ 1 2 М. П. Бронштейн «Солнечное вещество». — М.: Детиздат ЦК ВЛКСМ, 1936 г.
- ↑ 1 2 Василий Аксёнов. «Апельсины из Марокко». — М.: Эксмо, 2006 г.
- ↑ 1 2 Борис Ляпунов. «Неоткрытая планета». — М.: «Детская литература», 1968 г.
- ↑ 1 2 И. В. Петрянов-Соколов «Закону Менделеева 100 лет». — М.: «Химия и жизнь» № 3, 1969 г.
- ↑ 1 2 3 4 5 6 7 8 9 Айзек Азимов, Популярная физика. От архимедова рычага до квантовой механики. ― М.: Центрполиграф, 2005 г. — 752 стр.
- ↑ 1 2 Вернадский В.И. «Автотрофность человечества». — М.: «Химия и жизнь», № 8, 1970 г.
- ↑ 1 2 А. И. Китайгородский, Л. Д. Ландау. Физика для всех. — М.: Наука, 1984 г.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 Сэм Кин. Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева. — М.: Эксмо, 2015 г. — 464 с.
- ↑ 1 2 Сен Гук Ким, Ирина Ким, Дмитрий Ким. Элементы. — Санкт-Петербург: ООО «СУПЕР Издательство», 2019 г.
- ↑ В. О. Авченко. Кристалл в прозрачной оправе. Рассказы о воде и камнях. — М.: АСТ, 2015 г.
- ↑ В. Соснора. Триптих. — Л.: Лениздат, 1965 г. — 154 с. Худ. М. А. Кулаков. — 10 000 экз. г.